Center for Molecular Medicine Cologne

CMMC Junior Research Groups

The Junior Research Group Program (JRGP) has been an integral part of the Center's support measures for junior researchers’ careers. The CMMC offers junior scientists with exceptional credentials an excellent opportunity to further their academic career.

The Center provides funding for up to three internationally competitive JRG leaders. The selection process for appointing scientists as JRG leaders has been initiated. The groups not only have access to the CMMC´s infrastructure and administration, but are also provided with considerable funds for personnel, equipment and running costs, as well as negotiable additional funds that enable the group leaders to further strenghten their research project. The support of the JRGs is comparable to the Emmy Noether-Programm by the DFG and equivalent to a non-tenured Assistant Professorship with a running period of 5 (+3) years. 

In 2019 the CMMC awarded three open positions as CMMC JRG leaders in the field of Molecular Medicine to the following three outstanding young scientists based on an international, highly competitive recruitment procedure.

Our lab explores the existence and significance of epigenome structural alterations for ageing and its impact on disease development.

Hence, the structure of the genome may significantly change with age and become predisposed to disease development, such as cancer or degenerative diseases.

In particular, we are elucidating whether epigenome structural alterations, such as four-stranded G-quadruplex (G4) DNA, promote age-related genome instability and rewire gene activity and regulation.

CMMC Project: (Epi)Genome structure and stability - JRG Robert Hänsel-Hertsch
Hänsel-Hertsch Lab - Laboratory for Genome Biology
Publications - Robert Hänsel-Hertsch - Link to PubMed

We are interested in the mechanisms that regulate chemical modifications of histone proteins.

As signals that orchestrate gene expression, cell differentiation and many other processes, these reactions have to be faithfully controlled.

Our biochemical understanding of the multiprotein complexes that catalyze these reactions is still very limited.

Therefore, we aim to define aspects of their context dependent, local activity regulation using cryo-electron microscopy (cryo-EM), biochemical and cell biological approaches.

We are focussed on the role of cell death in health and disease.

In particular, we investigate the molecular mechanisms regulating different forms of cell death (e.g. apoptosis and necroptosis) and how cell death contributes to inflammatory programs, activated following pathogenic infection or tissue damage, as well as to tumorigenesis.

Understanding the complex relationship between cell death and inflammation will help to improve the current treatments of chronic inflammatory diseases and cancer. 

CMMC Project: Understanding the role of cell death in health and disease - JRG Alessandro Annibaldi
Annibaldi Lab - Laboratory of Cell Death, Inflammation and Immunity
Publications - Alessandro Annibaldi - Link to PubMed


Associated Junior Research Groups

The CMMC also supports Junior Research Groups working in the field of Molecular Medicine that are funded by external institutions as "associated JRGs" by providing access to lab/research space and the Center’s infrastructure.

These associated JRGs benefit from the CMMC´s dynamic allocation concept of lab/research in the CMMC Research Building. Currently the CMMC supports the following associated Junior Research Groups

JRG-Leader of NRW Stem Cell Network |  Institute for Neurophysiology

Our main focus is on understanding the molecular basis of programming and reprogramming of cell-fate decisions during embryogenesis, homeostasis and aging.

Additionally, we focus on devising molecular strategies to ‘hack’ these genetic networks that programs cell-fates to induce regenerative responses upon injury.

    CMMC Project: Developmental and regenerative RNA biology - assoc. JRG Leo Kurian
    CMMC Project: Early detection and epigenetic rejuvenation strategies for age-associated cardiac dysfunctions in humans - A 07 - Leo Kurian
    Kurian Lab - Developmental and Regenerative RNA Biology
    Publications - Leo Kurian - Link to PubMed

    Emmy-Noether Junior Research Group | Center of Pediatrics and Adolescent Medicine

    Our research focus:

    1.     Disease gene discovery for muscular dystrophies, myopathies and brain malformations.
    2.     Molecular disease mechanisms in congenital muscular dystrophies in particular dystroglycanopathies.
    3.     Protein biochemistry of enzymes involved in dystroglycan glycosylation and its translational application.

    CMMC Project: Primary Muscle Disease - assoc. JRG Sebahattin Cirak
    Publications - Sebahattin Cirak - Link to PubMed

    Department of Translational Genomics

    Cell death and inflammation are common features of many autoimmune and degenerative disorders.

    It is now clear that cell death can trigger chronic inflammation resulting in autoimmunity and degenerative diseases, including cancer.

    Therefore, understanding the crosstalk between death and inflammation is important to find effective therapies for such diseases.

    We aim to investigate the processes regulating the execution of cell death downstream of innate immune receptors.

    In particular, we want to uncover the importance of different modalities of cell death in autoimmune diseases and cancer, with the ultimate purpose to find to therapeutic strategies to tackle inflammation-dependent pathologies.

    CMMC Project: Cell death and inflammation in health and disease - assoc. JRG Nieves Peltzer
    Peltzer Lab - Cell Death and Inflammation in Health and Disease
    Publications - Nieves Peltzer - Link to PubMed

    NRW JRG - Artificial Intelligence | Center of Molecular Medicine Cologne

    We are interested in resolving large data challenges in biology and medicine.

    With the use of deep learning we aim at developing new data-driven approaches to study of image and video data in biology.

    Our theoretical interests lie in using machine learning to find appropriate data representations for resolving specific scientific questions.

    We apply and develop computational and analytical solutions to questions in cancer and ageing research.

    CMMC Project: Data Science of Bioimages - assoc. JRG Katarzyna Bozek
    Bozek Lab - Data Science of Bioimages
    Publications - Katarzyna Bozek - Link to PubMed

    Center of Molecular Medicine Cologne

    We are interested in understanding the mechanisms governing the homeostasis of the cellular proteome (proteostasis).

    Protein structures are highly complex and dynamic, and several stresses can compromise their integrity.

    Therefore, cells are equipped with an intricate and adaptive network of factors ensuring protein synthesis, folding, trafficking, conformational maintenance, and degradation. Importantly, misfolded proteins are not only dysfunctional, but they can also coalesce into potentially toxic aggregates. These represent a hallmark of many aging-associated neurodegenerative disorders, such as Parkinson’s and Alzheimer’s diseases.

    Our aims are to understand how protein quality control pathways distinguish defective from functional proteins, how the decision between repair and elimination is made, and how these processes are activated under stress and pathological conditions.

    CMMC Project: Protein quality control and stress response - assoc. JRG Débora Trentini-Schmidt
    Trentini Lab - Protein quality control and stress response
    Publication - Débora Trentini-Schmidt - Link to PubMed

    Center of Molecular Medicine Cologne

    The Computational Biology Aging group aims to apply state-of-the-art computational approaches to address challenges in ageing, stress (including disease), and regulatory acceptance.

    Central to our approach is the integration of multiple levels of data to better understand the specific biological system.

    Here we are able to make use of available complex datasets, including OMICs, chemistry, or other metadata to, for example, develop novel multivariate biomarkers or develop new adverse outcome pathways.

    CMMC Project: Understanding the molecular basis of stress, longevity, and aging - assoc. JRG Philipp Antczak
    Antczak Lab - Understanding the molecular basis of stress, longevity, and aging
    Publications - Philipp Antczak - Link to PubMed